Towards the Use of Controlled Natural Languages in Hazard Analysis and Risk Assessment
Introduction – ISO 26262

ISO 26262 Road Vehicles – Functional Safety (2011)
Introduction – Hazard Analysis and Risk Assessment (1/2)

► Situation analysis and hazard identification

► Hazardous Event Classification
 ▪ Determination of the Severity (S)
 ▪ Probability of Exposure (E)
 ▪ Controllability (C)

► Automotive Safety Integrity Level (ASIL) determination

<table>
<thead>
<tr>
<th>Vehicle Speed</th>
<th>Malfunction</th>
<th>Hazard</th>
<th>S</th>
<th>E</th>
<th>C</th>
<th>ASIL</th>
</tr>
</thead>
<tbody>
<tr>
<td><10km/h</td>
<td>Charging of battery pack beyond allowable energy storage</td>
<td>Overcharge causes thermal event</td>
<td>S3</td>
<td>E3</td>
<td>C1</td>
<td>A</td>
</tr>
<tr>
<td>>10km/h, <50 km/h</td>
<td>Charging of battery pack beyond allowable energy storage</td>
<td>Overcharge causes thermal event</td>
<td>S3</td>
<td>E3</td>
<td>C2</td>
<td>B</td>
</tr>
<tr>
<td>> 50 km/h</td>
<td>Charging of battery pack beyond allowable energy storage</td>
<td>Overcharge causes thermal event</td>
<td>S3</td>
<td>E3</td>
<td>C3</td>
<td>C</td>
</tr>
</tbody>
</table>

Introduction – Hazard Analysis and Risk Assessment (2/2)

Problems:
- Determination of the risk parameters
- Risk parameters defined in a qualitative way
- Documentation

Documentation – Natural language
- Similar hazardous events are often described using different wordings and phrases
- Similar hazardous events might be classified differently
- Difficult to check consistency

Goal: Consistent hazardous event ratings across all hazard analyses and risk assessments
Related Work – Controlled Natural Languages

► Controlled natural languages (CNLs)
 - Subset of a natural language
 - Restrictions on
 - Grammar
 - Vocabulary
 - Objectives
 - Reduce ambiguity and complexity
 - Improve readability and automatic processing

► Many examples from various domains
 - Knowledge representation
 - Requirements engineering
 - Aviation
 - Biomedicine
 - ...
Related Work – Attempto Controlled English (ACE) (1/2)

► CNL for knowledge representation and query language

► Objectives:
 ▪ Automatic and unambiguous translation into first-order logic

► Vocabulary
 ▪ Functions words (conjunctions, prepositions, ...) and predefined phrases (there is, it is false that, ...)
 ▪ Content words (nouns, verbs, adjectives, and adverbs)
 • Basic lexicon (~ 100,000 entries)

► Grammar
 ▪ Sequence of declarative sentences
 ▪ Questions

A customer inserts a card that is valid and opens an account.

A customer inserts the card.
A card is valid.
The customer opens an account.

A customer inserts the card.
A card is valid.
The card opens an account.

A customer inserts a card that is valid and that opens an account.

Does a customer insert a card?
Who inserts a card?

Fuchs, Norbert E., Kaarel Kaljurand, and Tobias Kuhn. “Attempto Controlled English for Knowledge Representation,”
Related Work – Standard Language (SLANG)

► CNL for writing of process build instructions

► Objectives
 ▪ Reduce ambiguity and lack of consistency
 ▪ Generation of required elements and labor times
 ▪ Automatic translation

► Sentence written in imperative form
 ▪ Sentence \rightarrow VerbPhrase PrepositionalPhrase*

► Number of verbs is limited and each verb describes a single particular action

Related Work – Summary

Why not using an existing controlled natural language?

- General-purpose language
 - Not optimized for a domain-specific problem
 - In general, usage is possible but more complex

- Domain-purpose language
 - Too domain-specific
 - Usually not applicable for other domains/purposes

Ford’s Hazard Analysis and Risk Assessment Tooling

<table>
<thead>
<tr>
<th>Scenario Description</th>
<th>Scenario Description Details</th>
<th>Effort on Vehicle Level</th>
<th>Hazard</th>
<th>Assumptions</th>
<th>Hazardous Event (PHE-EH)</th>
<th>S</th>
<th>Severity</th>
<th>E</th>
<th>Exposer</th>
<th>C</th>
<th>Controllability</th>
<th>ASIL</th>
<th>Safety Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gargen prior to manufac</td>
<td>Reference see Tab-1</td>
<td>Describe the element including refer to vehicle level details or parts of drawings</td>
<td>Hazard Dictionary</td>
<td>Reference see Tab-5 Assumptions (optional)</td>
<td>Assign cause, including hazard and faulty effect is balanced</td>
<td>Reason</td>
<td>Rationale (description of reasonable expected consequences if not observed)</td>
<td>Name</td>
<td>Rationale (including description of avoidable factors)</td>
<td>ID</td>
<td>Status</td>
<td>Name</td>
<td>Additional notes and additional columns</td>
</tr>
</tbody>
</table>

Towards the Use of Controlled Natural Languages in Hazard Analysis and Risk Assessment
Paul Chomicz | 31.05.2017
Analysis Process (1/3)

Iterative and bottom-up approach

<table>
<thead>
<tr>
<th>Hazardous Events</th>
<th>9 HARA documents</th>
<th>7 HARA documents</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>208</td>
<td>93</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>67.8 %</td>
<td>81.7 %</td>
<td>72.1 %</td>
</tr>
<tr>
<td></td>
<td>21.6 %</td>
<td>12.9 %</td>
<td>18.9 %</td>
</tr>
<tr>
<td></td>
<td>10.6 %</td>
<td>5.4 %</td>
<td>9.0 %</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The system is active at high speed and may not detect objects in relevant distance (due to sensor performance).

The driver is not alerted to a credible threat.

Unintended and unlimited AEB brake activation leading to loss of vehicle steerability due to blocked wheels without ABS.

Fire outside passenger compartment.
Analysis Process (2/3)

Most frequently used words and phrases in hazardous event descriptions:

- unintended
- vehicle(s)
- no hazard
- loss of
- the
- in
- due to
- braking
- behaviour
- acceleration; and
- brake(s); driver(s); is; yaw
- a; speed; unexpected
- driving; propulsion; with
Analysis Process (3/3)

Synonyms and similar words and phrases in hazardous event descriptions

- unintended
- unexpected
- undue
- undesired
- not expected
- unintended yaw behaviour (u)r
- unexpected yaw behaviour (u)r
- braking
- brake
- brakes
- behaviour
- behavior
Formalization (1/2)

- Restrictions on grammar and vocabulary
- Descriptions in bullet-point manner
- Reduction of complexity
 - No verbs!
 - No grammatical tenses!
 - No pronouns!
 - No clauses!
- Reduction of ambiguity
 - Restricted vocabulary without synonyms
Formalization (2/2)

NP -> Determiner? Adverb* Adjective* Noun+

PP -> Preposition NP

HE -> NP PP*

Hazardous Event Description

NP
 ────
 /
IN NP
 / |
Fire outside passenger compartment.
Evaluation (1/2)

- 156 out of 217 already in line with the CNL (71.9 %)
- 48 hazardous events translated into a correct form by replacing synonyms (22.1 %)
- Other descriptions also translated into semantically equivalent descriptions conform to the CNL

<table>
<thead>
<tr>
<th>Hazardous Events</th>
<th>9 HARA documents</th>
<th>7 HARA documents</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BP 208</td>
<td>BP 93</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>67.8 %</td>
<td>81.7 %</td>
<td>72.1 %</td>
</tr>
<tr>
<td></td>
<td>21.6 %</td>
<td>12.9 %</td>
<td>18.9 %</td>
</tr>
<tr>
<td></td>
<td>10.6 %</td>
<td>5.4 %</td>
<td>9.0 %</td>
</tr>
</tbody>
</table>

HARA documents 9 HARA documents 7 HARA documents total
BP 208 67.8 % 81.7 % 72.1 %
S 21.6 % 12.9 % 18.9 %
M 10.6 % 5.4 % 9.0 %
Evaluation (2/2)

Translated Hazardous Event Description

- **Active system at high speed** and **undetected objects in relevant distance** by the system **due to sensor performance**.
Conclusion

► Controlled natural languages based on given HARAs
 ▪ Common structure
 ▪ Restricted vocabulary

► Reduction of complexity and ambiguity

► Common structure simplifies the search for existing same or similar hazardous events

► Tooling essential
 ▪ Correctness
 ▪ Input support
Outlook

► Formalization of the rationales for the risk parameters
 ▪ Severity
 ▪ Exposure
 ▪ Controllability

► Implementation of the concept in a prototype tool

► Case study based on prototype tool
 ▪ Further examination and improvement of the concept
 ▪ Gather more user experience
 ▪ Show benefits of the concept